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An adaptive moving mesh method is developed for the numerical solution of
an enthalpy formulation of heat conduction problems with a phase change. The
algorithm is based on a very simple mesh modification strategy that allows the smooth
evolution of mesh nodes to track interfaces. At each time step the nonlinear enthalpy
equation is solved using a novel semi-implicit moving mesh discretisation which is
shown to possess a unique solution. Numerical examples are given for a two-phase
freezing problem, a model of a spot-welding process, and a three-phase problem
with a varying number of interfaces. These test cases demonstrate the accuracy and
effectiveness of the overall strategy.c© 2000 Academic Press

1. INTRODUCTION

A large number of important physical processes involve heat conduction and materi-
als undergoing a change of phase. Examples include semiconductor design, geophysics,
cryosurgery, and industrial applications involving metals, oil, and plastics [22]. These prob-
lems are often collectively called Stefan or moving boundary value problems. Unfortunately,
analytical solutions are only available for a limited number of model examples and hence
the solution of most practical cases requires the use of numerical techniques.

What makes these problems difficult to solve is the presence of the moving boundary at
which the material is changing phase. A number of numerical methods have been proposed
which essentially fall into two categories: front-tracking methods and enthalpy methods
(see [8, 15]).

Front-tracking techniques is the term usually applied to methods that explicitly require the
Stefan, or equivalent jump, condition to be satisfied on the moving boundary while solving
the heat conduction equations in either phase. The location of the boundary is therefore
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FIG. 1. Smooth and discontinuous temperature-enthalpy functions for a three-phase problem;Href = 0,
C1 = C2 = 1, Tm1 = −0.4, Tm2 = 0, andε1 = ε2 = 1E−2.

central to the accuracy and applicability of this approach. However, in multidimensions it
is not uncommon for the phase boundary to develop cusps and to double back on itself and
generally become difficult to track.

In an attempt to avoid the need to know the location of the phase boundary, the heat
conduction equations can be reformulated in terms of the enthalpy which is the sum of
sensible and latent heats. Using this formulation the energy balance at the phase boundary
is satisfied automatically and if the location of the boundary is required then it can be
determined a posteriori. Enthalpy methods therefore appear to avoid some of the difficulties
of front-tracking methods.

However, if the material in question changes phase at a specified temperature then the
temperature–enthalpy relationship has a jump discontinuity at the melting temperature (see
Fig. 1). For these materials a naive discretisation of the enthalpy equation on a uniform
grid is well known to predict non-physical features such as a step-like movement of the
phase boundary and spurious temperature plateaux [8]. Various ways of eliminating these
undesirable features have been proposed including specialised post-processing techniques
[24] and the judicious choice of time steps. These methods work reasonably well for one-
dimensional problems but their application to multidimensional examples seems less clear.

A second approach is to smooth the temperature–enthalpy relationship so that it is at
least continuous (see, for example, [19] and Section 2). A smoothed temperature–enthalpy
relationship can also be used to model materials that change phase over a temperature range
rather than at a specified temperature [12]. If one uses a stationary grid then smoothing
the enthalpy function has to be done carefully as it has been observed that if the amount
of smoothing is too large then the numerical results can become inaccurate [23]. Reducing
the level of smoothing improves the accuracy but eventually the step-like behaviour of the
movement of the phase boundary reappears.
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The simplest way of avoiding non-physical behaviour using the enthalpy formulation is
to reduce the spatial step size. However, if this is done uniformly over the whole domain
then the overall method would be computationally expensive. The mesh spacing need only
be refined around the position of the moving phase change boundary which suggests some
form of adaptive mesh algorithm would be useful. Within a finite element context this is
usually achieved using theh-method of adaptation, where the mesh is locally refined or
coarsened by adding or deleting points [20, 21]. A less popular approach is to use the so-
calledr -refinement method where mesh points are moved throughout the domain while the
connectivity of the mesh is kept fixed. The main reason for the lack of popularity of this
approach is the difficulty involved in controlling the geometry of the mesh elements. If this
is not done with care then mesh tangling and elements with negative areas can easily arise.
However, the development of a robustr -adaptive method is attractive in that it intuitively
should be able to accurately resolve and follow important solution features. The coding
involved in a moving mesh method is also simpler than anh-method, which requires a
considerably more complicated data structure.

There has been much recent interest in the development of moving mesh methods for
the solution of problems with steep solution fronts such as travelling wave solutions in
reaction-diffusion systems and boundary and shear layers in fluid dynamics calculations
[1, 3, 16]. At the heart of these methods is the grid movement strategy which is usually based
on the idea of mesh equidistribution where a positive monitor function is evenly distributed
between the available mesh nodes.

The first aim of this paper is to show how a very simple moving mesh method can be
used to solve a smoothed enthalpy formulation of the heat conduction equations. The mesh
movement algorithm is based on the equidistribution of an analytically integrable monitor
function which avoids the need to discretise the equidistribution principle and automatically
leads to grids that evolve smoothly in time. The approach is similar to that used by Farrell
and Drury [14] to solve nonlinear hyperbolic problems.

As the moving grid method aims to cluster mesh points around the phase change interface,
it is clear that we require some form of an implicit discretisation. Even on a stationary
grid one has to be careful that unique solutions exist of the resulting nonlinear algebraic
systems. Using a moving grid introduces convection-like terms from the semi-Lagrangian
formulation of the original problem. A second aim of this paper is to consider a novel semi-
implicit discretisation of these equations and to prove that the resulting nonlinear algebraic
systems arising at each time step have unique solutions.

The layout of the rest of this paper is as follows. In the next section we present a smoothed
enthalpy formulation of the heat conduction equations. In Section 3 we describe the semi-
implicit discretisation of the enthalpy equation on a moving mesh. In Section 4 we describe
the mesh movement strategy. Finally, in Section 5 we apply the moving mesh method to
the solution of a two-phase freezing problem, to a model of a spot-welding process, and to
a three-phase problem with a varying number of interfaces.

2. THE GOVERNING EQUATIONS

The governing equations for multiphase one-dimensional heat conduction are

Ci (Ti )
∂Ti

∂t
= ∂

∂x

(
ki (Ti )

∂Ti

∂x

)
+ ϕi (Ti ), (1)
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where the indexi = 1, . . . ,NP corresponds to theNP separate phases. HereCi (Ti )= ρci ,
andρ, ci , ki (Ti ), andTi (x, t) denote the volumetric heat capacities, the density (assumed
the same in each phase), the specific heats, the thermal conductivities, and the temperatures,
respectively. Here,ϕi represents possible body heating or cooling terms. If a phase change
occurs between phasei and phasei + 1 at a specific temperatureT = Tmi , and we denote
the position of the phase change boundary byx= si (t), then an energy balance gives rise
to the conditions

Ti |si (t) = Ti+1|si (t) = Tmi (2)

ki+1
∂Ti+1

∂x

∣∣∣∣
si (t)

− ki
∂Ti

∂x

∣∣∣∣
si (t)

= λi
dsi (t)

dt
, (3)

whereλi is the latent heat per unit volume involved in the phase change.
To reformulate this problem we introduce an enthalpy function which represents the sum

of sensible and latent heats and is given by

H(T) =


∫ T

Tref
C(ξ) dξ, T < Tm1

H
(
T−mi

)+ λi +
∫ T

Tmi
C(ξ) dξ, Tmi < T < Tmi+1, i = 1, . . . ,NP−2,

H
(
T−mNP−1

)+ λNP−1+
∫ T

TmNP−1
C(ξ) dξ, TmNP−1 < T,

(4)

where H(Tmi )= limδ→0− H(Tmi + δ) and Tref is any reference temperature belowTm1.
Equations (1) and conditions (2) and (3) can then be written as the one equation

∂H

∂t
= ∂

∂x

(
k
∂T

∂x

)
+ ϕ, where

k(T) = ki (T)

φ(T) = φi (T)

C(T) = Ci (T)

 Tmi−1 < T < Tmi . (5)

If the thermal conductivities are temperature dependent then (5) can be linearised by ap-
plying the Kirchoff transformation

u(T) =
∫ T

Tref

k(ξ) dξ. (6)

In terms of this new variable Eq. (5) is simplified to

∂H

∂t
= ∂2u

∂x2
+ ϕ(u). (7)

This equation can then be solved foru and transformed using (6) to find the temperature.
If Ci is constant in each phase then we see from (4) thatH(T) is a linear function with jump

discontinuities at the phase change temperatures (see Fig. 1). For the reasons outlined in the
Introduction, various attempts have been made to smooth out these discontinuities inH .
Based on a continuously differentiable relationship suggested by Egolf and Manz [12] for
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two-phase problems, we consider the function

H(T) =



Href+ C1
(
T − Tm1

)+ λ1
2 exp

(
−|T−Tm1 |

ε−1

)
, T ≤ Tm1

H
(
Tmi−1

)+ λi−1

2 + Ci
(
T − Tmi−1

)
− λi−1

2 exp
(
−|T−Tmi−1 |

ε+i−1

)
+ λi

2 exp
(
−|T−Tmi |

ε−i

)
Tmi−1 ≤ T ≤ Tmi ,

i = 2, . . . ,NP− 1
H
(
TmNP−1

)+ λNP−1

2 + CNP
(
T − TmNP−1

)
− λNP−1

2 exp
(
−|T−TmNP−1 |

ε+NP−1

)
, T ≥ TmNP−1,

(8)

whereε−i andε+i determine the rates at which the temperature-enthalpy function asymptotes
to the linear relationship away from the phase change temperatureTmi (see Fig. 1). We will
assume thatε−i ¿ (Tmi − Tmi−1) andε+i ¿ (Tmi+1 − Tmi ), and hence forH(T) to essentially
be continuously differentiable atTmi we require that

Ci − Ci+1 = λi

2

(
1

ε+i
− 1

ε−i

)
. (9)

If εi = ε−i + ε+i then we can define a modified Stefan number for phase changei as

St∗i =
(Ci+1− Ci )εi

λi
. (10)

The simultaneous satisfaction of (9) and (10) gives rise to quadratic equations forε−i and
ε+i which have physically relevant solutions given by

ε−i =
εi

2St∗i
(1+ St∗i −

√
1+ St∗i ) (11)

and

ε+i =
εi

2St∗i
(St∗i − 1+√1+ St∗i ). (12)

In the limit thatCi+1→Ci we haveε+i → ε−i = εi /2. Figure 1 shows the smoothed enthalpy
function of a three-phase problem considered in Section 5.

The original motivation for this model was to describe mixtures and glassy substances
that have a continuous enthalpy transition as a function of temperature from a pure solid
phase to a pure liquid phase.

3. AN SEMI-IMPLICIT MOVING MESH DISCRETISATION

We now consider the numerical solution of (7) for(x, t)∈Ä= (xL , xR)× (0, T). We
assume that the domain is partitioned into strips such that

Ä =
⋃

0≤n≤Nt−1

(xL , xR)× [tn, tn+1).
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Each strip is made up of two spatial grids

xn
1 =

{
xL = xn

0 < xn
1 < · · · < xn

N−1 < xn
N = xR

}
and

xn+1
1 = {xL = xn+1

0 < xn+1
1 < · · · < xn+1

N−1 < xn+1
N = xR

}
.

In the next section we describe how the grid is generated at time leveltn+1. For the moment
we will assume that it is given.

In order to incorporate the movement of the grid we require a discretisation of the semi-
Lagrangian formulation of (7) which takes the form

∂H

∂t
− dx

dt

∂H

∂x
= ∂2u

∂x2
+ ϕ(u). (13)

To describe the discretisation we first introduce some notation. Lethn
j = xn

j − xn
j−1, h̄n

j =
(hn

j+1+ hn
j )/2, and1tn= tn− tn−1. We will also denote

un
1 =

(
un

0, u
n
1, . . . ,u

n
N

)T
, (14)

whereun
j represents the approximation ofu(xn

j , tn). Similarly, let

Hn
1 =

(
Hn

0 , Hn
1 , . . . , Hn

N

)T = (H(un
0

)
, H
(
un

1

)
, . . . , H

(
un

N

))T
(15)

and

ϕn
1 =

(
ϕn

0, ϕ
n
1, . . . , ϕ

n
N

)T = (ϕ(un
0

)
, ϕ
(
un

1

)
, . . . , ϕ

(
un

N

))T
. (16)

We consider the following discretisation of (13)

Hn+1
j − Hn

j

1tn+1
− xn+1

j − xn
j

1tn+1

(
Hn

j+1− Hn
j−1

hn
j+1+ hn

j+1

)

= 2

hn+1
j+1 + hn+1

j

(
un+1

j+1 − un+1
j

hn+1
j+1

− un+1
j − un+1

j−1

hn+1
j

)
+ ϕn+1

j . (17)

If Dirichlet conditions are given atx= xL and x= xR then (17) is applied forj =
1, 2 . . . , N− 1. If a physically relevant derivative boundary condition of the form

∂u

∂x
= α(t)u+ g(t), α(t) ≥ 0, (18)

is specified atx= xL then this is discretised att = tn+1 by introducing the fictitious unknown
un+1
−1 outside the domain atx= xL − hn+1

1 and a central difference is used to write

un+1
1 − un+1

−1

2hn+1
1

= αn+1un+1
0 + gn+1. (19)
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We then apply the difference scheme (17) atj = 0 so thatun+1
−1 can be eliminated. A similar

procedure can be carried out if a derivative condition of the form

∂u

∂x
= α(t)u+ g(t), α(t) ≤ 0, (20)

is specified atx= xR.
Note that the terms on the righthand side of (17) are treated implicitly, whereas the term

introduced from the mesh movement it treated explicitly. Since the grid will be clustered
around the moving front we require an implicit discretisation of the heat conduction and
source terms to allow the use of reasonably large time steps. We will see below that the
explicit treatment of thėx Hx term allows us to establish the existence and uniqueness of a
solution of Eqs. (17).

3.1. Iterative solution of the nonlinear system of equations.The calculation ofun+1
1

requires the solution of the nonlinear algebraic equations (17) which after multiplying
through by1tn+1 can be written in the form

F
(
un+1
1

) ≡ Aun+1
1 + Hn+1

1 −1tn+1ϕn+1
1 + rn = 0, (21)

wherern is a vector that is independent ofun+1
1 . The tridiagonal matrixA has positive

diagonal elements and negative off-diagonal elements and can easily be shown to be an
irreducibly diagonally dominant M-matrix. An immediate question is whether a unique
solution of (21) exists. Ifϕ(u)= 0 we can write (21) in the form

F
(
un+1
1

) = Aun+1
1 + φ(un+1

1

) = 0, (22)

whereφ is continuous, diagonal, and monotone in each component. Existence and unique-
ness is given in the following theorem [13].

THEOREM3.1. If

G(v j ) ≡ aj j v j + φ j (v j )+
j−1∑
i=1

aji u
[n+1,s+1]
i +

N−1∑
i= j+1

aji u
[n+1,s]
i = 0 (23)

then the nonlinear SOR sequence{u[n+1,s]
1 } given by

u[n+1,s+1]
j = u[n+1,s]

j + ω(v j − u[n+1,s]
j

)
,

if {(
u[n+1,s]

j + ω(v j − u[n+1,s]
j

)}
u[n+1,s]

j > 0

and

u[n+1,s+1]
j = v j , otherwise,

converges globally to the unique solution of(22) for all ω ∈ (0, 2).
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Note that an implicit discretisation of thėx Hx term would lead to a system similar to
(22) but the mappingφ would not be diagonal and we could not use the above theorem.

In practice, we use Newton’s method to solve (21). Since the smoothed enthalpy function
(8) is continuously differentiable we have no difficulty in defining the Newton iteration.
If Newton’s method fails to converge then we apply the nonlinear SOR iteration which
requires the solution of Eqs. (23). The next question is whether unique solutions exist
to these scalar nonlinear equations. This is clearly the case sinceφ j is a monotonically
increasing function andaj j > 0 and henceG→±∞ asv j →±∞ and so a solution exists.
These scalar problems are solved using Newton’s method which again is well defined due
to the smoothness properties ofH . If Newton’s method fails to converge then we use a
bisection procedure to provide an adequate initial guess.

4. MOVING THE MESH

4.1. Grid equidistribution. The discretisation described in the previous section can be
used when gridsxn

1 andxn+1
1 are available. Assuming thatxn

1 has already been determined
it remains to describe how to calculatexn+1

1 . At each time step a new grid is generated based
on the idea of mesh equidistribution. A computational grid is said to be equidistributing if∫ xj

x j−1

M(x) dx =
∫ xj+1

xj

M(x) dx = 1

N

∫ xR

xL

M(x) dx, j = 1, . . . , N, (24)

whereM(x)>0 is a monitor function which should be related to the local difficulty in
solving the problem. The theoretical basis of mesh equidistribution has been established
for a number of approximation problems such as optimal knot placements for spline collo-
cation approximations of two-point boundary value problems [9] and the characterisation
of optimal grids for piecewise polynomial interpolation [6].

In practice the monitor function is based on the numerical solution and the equidistribution
conditions are discretised. For example, use of the mid-point rule to discretise (24) gives
rise to the set of equations

M j+ 1
2
(xj+1− xj ) = M j− 1

2
(xj − xj−1), j = 1, 2, . . . , N − 1, (25)

whereM j+1/2 is an approximation ofM(xj+1/2). The coupled set of Eqs. (21) and (25) then
have to be solved simultaneously for{u j , xj }N−1

j=1 .
The quality of the adaptive grid depends crucially on the monitor function. A popular

choice for problems with moving steep fronts is

M(x) =
√

1+ α
(
∂H

∂x

)2

, α > 0, (26)

which represents a scaled solution arc-length. Through numerical experimentation, Duncan
[11] concludes that the grids obtained by equidistributing this monitor function are not
sufficiently clustered at the phase change boundary and that it is unsuitable for multi-phase
problems with different latent heat jumps. Instead, Duncan proposes the monitor function

M(x) = 1+ η
∣∣∣∣∂F(H)

∂x

∣∣∣∣ , (27)
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where the parameterη>0 controls the number of mesh points in the phase transition
regions. The functionF(H) is chosen to give a uniform grid in pure phase regions and to
give equal weighting to each phase transition region, regardless of the latent heat jumps.

The meshes obtained by equidistributing (26) or (27) will have very large ratios between
adjacent grid cells. These can lead to a deterioration in solution accuracy and to very
stiff systems of ordinary differential equations if a method of lines approach is used. A
common strategy to alleviate this problem is to smooth the discrete values of the monitor
function before attempting to equidistribute them [10]. This additional step can become
computationally expensive if a smooth grid is required. Furthermore, it is far from clear
what the correct balance should be between the competing effects of adaptivity provided
by the monitor function, and the smoothing process.

4.2. An integrable monitor function.Discretisation of the equidistribution principle can
be avoided if the monitor function is analytically integrable. If the monitor function is chosen
carefully then the resulting grid will also be automatically smooth. There are many possible
integrable monitor functions that will give rise to a smoothly clustered grid. For problems
involving the propagation of a single phase change boundary we consider equidistributing
the function

M(x) = 1+ µ1√
µ2

2(x − x∗)2+ 1
, (28)

which was originally proposed by Farrell and Drury [14] to solve problems with steep
solution fronts. The parametersµ1 andµ2 are positive constants that affect the smoothness
and clustering of the grid around the pointx∗ which is an estimate of the position of the
phase change boundary. The positions of the mesh points that exactly equidistribute (28)
are the solutions of the scalar nonlinear equations

xj + µ1

µ2
sinh−1(µ2(xj − x∗))− µ1

µ2

(
1− j

N

)
sinh−1(µ2(xL − x∗))

− j

N

(
(xR− xL)+ µ1

µ2
(sinh−1(µ2(xR− x∗)))

)
= 0, (29)

for j = 1, 2, . . . , N− 1. These can be easily solved using Newton’s method and the resulting
grid is clearly non-overlapping. Figures 3 and 4 demonstrate the influence of the choice of

FIG. 2. Mirror grids.
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FIG. 3. Effect of varyingµ1 with µ2 being fixed withN = 40.

parametersµ1 andµ2 on a grid that tracks a moving front wherex∗(t)= 2
√

t/5. We can see
clearly that the effect of increasingµ1 while keepingµ2 fixed is to reduce the mesh spacing
aroundx∗ and to widen the mesh spacing away fromx∗. We also note that the main effect
of increasingµ2 is to reduce the extent over which the mesh clustering occurs around the
front position. In all of these graphs we observe a very smooth evolution of the grid nodes.

It is often useful to have some estimate of the minimum mesh spacing using the monitor
function (28). A lower bound is obtained by settingx= x∗ and using the equidistribution
principle (24) we get

hmin ≈ 1

µ1N

[
(xR− xL)+ µ1

µ2
sinh−1(µ2(xR− xL))

]
. (30)

To ensure that Newton’s method for the solution of (21) converges and to avoid oscillations
it is important thatµ1 andµ2 are chosen so that at least two mesh points are contained
within the steep enthalpy layer at the phase front. The interfacial thickness is related toε

andλ in a non-trivial way so it is difficult to say exactly howµ1 andµ2 should be chosen for
a particular value ofε. In the numerical results section we have chosenε/λ≈ 10−3 which
results in a small perturbation of the original problem. By experimentation we have then
chosenµ1 andµ2 large enough to ensure that we can resolve the enthalpy layer.

Often a phase will appear or disappear during the lifetime of a simulation. Figure 5a
shows the behaviour of the mesh trajectories as a phase front exits the domain. Note the
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FIG. 4. Effect of varying bothµ1 andµ2 simultaneously withN = 40.

rapid redistribution of the mesh points within the interior of the domain when the front
leaves the domain. This behaviour can potentially lead to inaccuracies close to the bound-
ary. To avoid this problem, when a front exits the domain the redistribution of the grid
nodes is done smoothly by exponentially decreasing the value ofµ1 to zero while keeping
the value ofµ2 fixed. As we have seen in Fig. 3, this allows a smooth transition from
a significant amount of mesh clustering to a uniform grid. Figure 5b shows the effect of
settingµ∗1=µ1e−σ(t−t∗)2, σ > 0, wheret∗ is the time when the front reaches the boundary.
We can see clearly that the mesh points are reallocated in a very smooth manner. Figure 5c
shows that this process can also be run in reverse to smoothly introduce a phase front into
the domain.

When a front appears from a boundary then
∫ 1

0 M dx rapidly increase in time. This causes
distant grid points to move non-smoothly since the local value of the monitor function away
from the front position is almost constant. This effect can be seen clearly in Fig. 5a where grid
points at the right of the domain move sharply to the left to increase the local mesh spacing as
the front enters the domain att = 0. To solve this problem Farrell and Drury [14] suggest the
use of so-called mirror grids. To be precise, if a front is estimated to be atx∗ then the grid is
generated by equidistributing the monitor functionM(x)=M1(x)+M2(x)+M3(x)where

M1(x) = 1+ µ1√
µ2

2(x + x∗ − 2xL)2+ 1
, M2(x) = 1+ µ1√

µ2
2(x − x∗)2+ 1

,
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FIG. 5. Grids obtained using the analytically integrable monitor function withN = 40.

and

M3(x) = 1+ µ1√
µ2

2(x + x∗ − 2xR)2+ 1
.

It is clear from Fig. 2 that these are just mirror images of the original monitor function re-
flected over the respective boundaries. Therefore, whatever amount of monitor function is
lost from the domain, an equal amount is reflected back in. This composite monitor function
can again be analytically integrated and the grid points found by Newton’s method. The grid
shown in Fig. 5b was obtained using this approach and we can see that the aforementioned
problem close to the initial time has now been completely avoided. Finally, Fig. 5d shows
that the mirror grid procedure can be used to adapt to the position of fronts reflecting off
the boundary and also to fronts that interact. In the numerical examples that follow in the
next section we will use the mirror grid modification to the basic equidistribution procedure
outlined above.

For multiphase problems the monitor function is

M(x) =
NP−1∑
i=1

M (i )(x), (31)

whereM (i ) is the monitor function associated with the phase front connecting phasei and
i + 1.



SOLUTION OF STEFAN PROBLEMS USING A MESH 549

4.3. The complete algorithm.Each time step of the adaptive algorithm requires the
solution of (29) and (21). One could solve these simultaneously as one large nonlinear
algebraic system. The alternative is to decouple the calculation of the grid points from the
solution. There are two advantages of decoupling. First the size of the algebraic systems
that arise at each time step are smaller. This is of great importance for the extension to
multidimensional problems. The second advantage is that decoupling allows flexibility in
the choice of interative methods used to calculate the grid and the solution of the moving
mesh equations. In particular, by decoupling it is possible to use iterative methods with
different tolerances when determining the grid and the solution. The numerical results in
Section 5 were obtained using the following algorithm:

(1) Perform the simple prediction

xn+1
(∗,0) = xn

∗ +1tn+1

(
xn
∗ − xn−1

∗
1tn

)
. (32)

Sets= 0.
(2) Let x∗ = xn+1

(∗,0) and solve (29) to givexn+1
1,s .

(3) Solve (21) forun+1
1,s and then determinex∗ = xn+1

(∗,s+1) using linear interpolation for
the phase change temperature.

(4) If |xn+1
(∗,s+1)− xn+1

(∗,s)|<Tolgrid thenun+1
1 = un+1

1,s , xn+1
1 = xn+1

1,s , andxn+1
∗ = x(∗,s+1).

Otherwises= s+ 1 and goto (2).

There is rarely any need to use a very strict tolerance for the convergence of the grid
points and in all the calculations presented in the following section we setTolgrid= 10−3.
The simple initial extrapolation step is extremely useful to speed up convergence. By only
extrapolating the estimate ofx∗ we of course ensure that we have a non-overlapping grid.
Clearly the efficiency of this approach depends on how quickly convergence is reached.
The calculations forun+1

1,s+1 andxn+1
1,s+1 can be accelerated if the initial guesses for these

calculations areun+1
1,s andxn+1

1,s .

5. NUMERICAL EXPERIMENTS

5.1. Example 1. The first test case we consider is a classical Stefan problem describing
the freezing of water. This example has also been considered by Bonacinaet al.[4] and has
been used by Furzeland [15] to compare the performance of different numerical techniques
for solving moving boundary value problems. Equation (1) is solved subject to boundary
and initial conditions

T1(0, t) = −20,
∂T2

∂x
= 0 asx→∞, t > 0,

and

T1(x, 0) = T2(x, 0) = 10, for x ≥ 0.

The thermal properties are

k1 = 2.22, k2 = 0.556, C1 = 1.762, C2 = 4.226, λ1 = 338, Tm1 = 0.
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The similarity solution for this problem is given in Carslaw and Jaegar [7] and takes the
form

s(t) = 2φ
√
κ1t,

T1(x, t) = −20

(
1− erf(x/2

√
κ1t)

erfφ

)
,

T2(x, t) = 10

(
1− erfc(x/2

√
κ2t)

erfc(φ
√
κ1/κ2)

)
,

whereκi = ki /Ci andφ is the root of the equation

e−φ
2

erfφ
− k2

k1

√
κ1

κ2

e−κ1φ
2/κ2

2erfc(φ
√
κ1/κ2)

− φλ
√
π

20C1
= 0.

To avoid any difficulties with the discontinuity in the initial and boundary conditions,
and to compare the results with those of Furzeland [15], the problem was solved for
0.0012≤ t ≤ 0.288. Figure 6a shows the computed mesh trajectories with1t = 0.0012,
N= 40, ε1= ε+1 +ε−1 = 0.25 and the mesh has been generated withµ1=µ2= 200. We can
see that the mesh has followed smoothly the movement of the phase boundary and from

FIG. 6. Results for Example 1 withN = 40 andε = 0.25; (a) mesh trajectories; (b) front position — exact,
· · · adaptive, – – uniform; (c) enthalpy; (d) temperature atx = 0.2; — exact,· · · adaptive, – – uniform.
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TABLE I

Results for Example 1 withN = 40 andε1 = 0.5

µ Newt SOR ‖E f ‖L∞(Ä) ‖ET‖L2(Ä) ‖EH‖L1(Ä)

50 2486 351 1.726E−3 8.879E−2 3.951E−1
100 1044 10 1.328E−3 5.352E−2 3.776E−1
200 849 0 1.408E−3 5.075E−2 3.883E−1
400 759 0 1.736E−3 5.257E−2 4.078E−1

Fig. 6b we see that the clustering of mesh points has led to a very accurate prediction of the
position of the front. Included in this figure are the results obtained using a stationary uniform
mesh. Equation (7) has been discretised using a central difference approximation and the
resulting nonlinear equations solved for the enthalpy using a Newton iteration. This allows a
liquid fractionH/λ to be calculated for the mesh cell undergoing the phase transition which
can be used to improve the accuracy of the predicted front position. However, even with this
modification we can see that the uniform mesh results are poorer than the moving mesh pre-
diction. Figure 6c shows the computed enthalpy att = 0.0024, 0.0036, 0.018, 0.072, 0.144,
and 0.288. These again are very accurate. Finally, Fig. 6d shows the temperature history of
the pointx = 0.2. We can see the unphysical staircase behaviour using a fixed uniform mesh
and that the moving mesh results are in very good agreement with the analytical solution.

Table I compares the performance of the moving mesh method asµ1=µ2=µ is varied
with ε1 = 0.5 fixed, whereE f , ET , andEH denote the error in the front position, temper-
ature, and enthalpy, respectively. The CPU times have all been normalised to theε1 = 2
case and all calculations were performed using double precision arithmetic with the SOR
parameterω = 1.4. We see that as long asµ is sufficiently large then the algorithm is very
efficient requiring only two or three Newton steps per time step. For smaller values ofµ

the grid does not resolve the steep front inH and this leads to the increased number of
Newton and SOR steps. Table II shows the sensitivity of the numerical results to the choice
of ε1 with µ = 200 fixed. Whenε1 is large we see that the resulting nonlinear systems are
relatively easy to solve but this is at the cost of reduced accuracy. As we decreaseε1 we
find that the problem becomes slightly more difficult to integrate forward but that we get a
considerable improvement in accuracy. Eventually ifε1 is taken too small then we see an
increase in the overall cost of the algorithm with little improvement in accuracy. The last
row of this table shows the results using a fixed mesh. The moving mesh results are clearly
much better especially for the temperature. In fact to reduce the error in the temperature
to that using the moving mesh requires an order of magnitude more mesh points. The two

TABLE II

Results for Example 1 withN = 40 andµ = 200

ε1 Newt SOR ‖E f ‖L∞(Ä) ‖ET‖L2(Ä) ‖EH‖L1(Ä) CPU

2 742 0 4.908E−3 1.516E−1 1.058E+0 1.0
1 754 0 2.285E−3 7.948E−2 6.148E−1 1.1
0.5 849 0 1.408E−3 5.075E−2 3.883E−1 1.2
0.25 1068 10 1.558E−3 4.286E−2 2.868E−1 1.4

Uniform 497 0 6.207E−3 5.222E−1 8.756E−1 0.63
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TABLE III

Comparison of Adaptive Grid Results with Those Considered

by Furzeland [15]; µ = 200,ε1 = 0.25

Method/t 2.4E−3 3.6E−3 1.8E−2 7.2E−2 1.44E−1 2.88E−1

(i) 2.240E−2 2.760E−2 6.180E−2 1.238E−1 1.750E−1 2.476E−1
(ii) 1.960E−2 2.560E−2 6.170E−2 1.236E−2 1.749E−1 2.474E−1
(iii) 2.280E−2 2.790E−2 6.190E−2 1.237E−1 1.750E−1 2.474E−1
(iv) 2.500E−2 2.500E−2 5.000E−2 1.250E−1 1.750E−1 2.490E−1

Adaptive 2.155E−2 2.670E−2 6.053E−2 1.234E−1 1.748E−1 2.478E−1
s(t) 2.260E−2 2.790E−2 6.190E−2 1.238E−1 1.750E−1 2.475E−1

tables do show that very accurate solutions can be obtained using the moving mesh method
without the need for the grid being overly refined and for moderate values ofε1.

Finally, Table III compares the predicted front position with the four methods considered
by Furzeland [15]. Methods (i), (ii), and (iii) are based on front-tracking techniques whereas
method (iv) is based on a discretisation of an unsmoothed enthalpy formulation using a
stationary uniform grid. It should be noted that the results for method (i) are forN = 80
and the results for method (iii) are obtained by a method of lines approach using adaptive
time stepping. We see clearly that the moving mesh results are a significant improvement
over method (iv) and are very competitive with the three front-tracking methods.

5.2. Example 2. The second test case considered involves the simulation of the spot-
welding of two large sheets of steel using a high electric current as a body heating source.
The model used was proposed by Atthey [2] and this example has also been used as a test
case in the numerical work of Li [18]. In non-dimensionalised form the governing equation
is given by (7) with

ϕ(u) =
{

A0+ uE0, u ≤ 0.6

A+ uE, u > 0.6,
(33)

and

H(u) =


Bu, u < 1

B ≤ H ≤ B+ C, u = 1

Bu+ C u> 1,

(34)

whereA= 1.708, A0 = 0.336,E = 1.220,E0 = 3.457, B = 0.780, andC = 0.331. The
boundary and initial conditions take the form

∂u

∂x
=
{

0 onx = 0

−1.949u on x = 1,
(35)

andu(x, 0) = 0, 0≤ x ≤ 1.
Before the melting temperature is reached atx = 0 this is just a simple heat conduc-

tion problem. Once the melting temperature is reached it remains fixed for a timet∗ =C/
(A+ E) = 0.11305 while enough heat is added for the material to change phase. During
this time other parts of the material reach the melting temperature due to the body heating
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FIG. 7. Results for Example 2 withN = 40. (a) Mesh trajectories, (b) enthalpy;× coarse grid, — fine grid.

term thus leading to a finite mushy region. The interfaces between the solid-mush regions
and the liquid-mush regions will be referred to as the solidus and liquidus interfaces, re-
spectively. After the liquidus interface appears atx= 0 it rapidly moves across the domain
and eventually merges with the solidus interface.

Numerically, we define the position of the solidus and liquidus interfaces asxs(t) =
x(H(B)) andxl (t) = x(H(B + C)), whereH is the smoothed enthalpy function. Using
the smoothed enthalpy function the temperature atx = 0 increases continuously during the
change of phase rather than remaining fixed. To calculate the times when the solidus and
liquidus interfaces appear atx = 0 we use linear extrapolation in time from the solid and
liquid phases, respectively.

Figure 7 shows the computed solutions and mesh trajectories withN= 40,1t = 0.001,
andε1= 0.001. Before the temperature at the lefthand boundary reaches the melting tem-
perature we can see that a stationary uniform grid is being used. To ensure that the compu-
tational grid is in the correct position to track the solidus interface, the method first detects
the presence of the interface atx = 0 and then retakes a number of time steps such that
µ1 is increased exponentially to its final value. When a sufficient amount of heat has been
added the liquidus interface appears atx = 0 and moves very rapidly across the domain.
At this stage some of the grid points migrate smoothly from the solidus interface to resolve
the liquidus interface. Thereafter, we can see that the adaptive algorithm follows accurately
both interfaces which converge towards each other. The predicted interface positions are
shown in Fig. 8 which move very smoothly.

No exact solution exists for this test case so Fig. 7b compares the computed enthalpy with
the solutions obtained using a fine grid withN = 320. We see excellent agreement and note
that the enthalpy at the solidus interface is continuous whereas it is almost discontinuous at
the liquidus interface. An analytical argument to explain this behaviour is given in [17].

Tables IV and V show the convergence of a number of parameters describing the simu-
lation. Here,t0 andt1 are the times of the appearance of the solidus and liquidus interfaces,
respectively. The positions of the solidus interface att = t1 andt = 1 are denoted byS(t1)
andS(1). The prediction ofS(1) appears to be converging to aroundx = 0.76 which is in
reasonable agreement with the experimental value of 0.6 < x < 0.7 and is closer then the
predictions of Atthey(x ≈ 0.85) and Li(x ≈ 0.784).
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FIG. 8. Phase front propagation for Example 2.

5.3. Example 3. The final case we consider involves the appearance and disappearance
of four phase fronts. This example was originally proposed by Duncan [11]. The governing
equation is given by (7) withφ = 0 and the temperature-enthalpy function is

H(u) =


u for u<−0.4

u+ 0.2 for−0.4< u < 0

u+ 0.4 for 0< u.

(36)

The initial and boundary conditions are

H(x, 0) = −1 for x ∈ [0, 1],

H(0, t) =
{

4t − 1 for t ∈ [0, 0.5]

1 for t ∈ [0.5,∞),

H(1, t) =


−1 for t ∈ [0, 0.075]

4t − 1.3 for t ∈ [0.075, 0.575],

1 for t ∈ [0.575,∞).

TABLE IV

Results for Example 2 withN = 40,µ = 200, and∆t = 1E−3

ε1 t0 t1 t1 − t0 S(t1) S(1)

5.0E−3 0.67072 0.78594 0.11521 0.52347 0.75651
2.0E−3 0.67121 0.78553 0.11439 0.50807 0.75998
1.0E−3 0.67119 0.78488 0.11369 0.49832 0.76101
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TABLE V

Results for Example 2 withε1 = 2E−3,µ = 200

N 1t t0 t1 t1 − t0 S(t1) S(1)

40 4.0E−3 0.66487 0.77388 0.10901 0.49949 0.79713
80 2.0E−3 0.66863 0.78340 0.11477 0.50642 0.76939

160 1.0E−3 0.67124 0.78565 0.11441 0.50741 0.76019

The solution of this problem has two phase-change boundaries moving to the right and two
moving to the left. The fronts moving to the right appear att = 0.2 and 0.35 and the fronts
moving to the left att = 0.275 and 0.425. The fronts moving to the right and left annihilate
each other and hence we have the added difficulty of the disappearance of fronts during the
lifetime of the simulation.

Figure 9 shows the computed mesh trajectories and enthalpy at the timest = 0.15, 0.25,
0.3, 0.35, 0.4, 0.45, 0.5, 0.53, 0.56, and 0.6 using the parametersN= 40, ε1= ε2= 0.001,
1t = 0.001, andTolgrid = 0.001. As no exact solution is available we have compared the
solution with a fine grid solution withN = 320. We can see that the grid evolves smoothly
to track the appearance and disappearance of all the interfaces. Finally, Fig. 10 shows the
predicted front positions.

6. EXTENSIONS

A major benefit of an adaptive moving mesh approach will be for problems in more than
one dimension. To generate an adaptive moving mesh it is useful to regard the physical
domainÄp as the image of a computational (logical) domainÄc under the invertible maps

x = x(ξ, η, t), y = y(ξ, η, t) and ξ = ξ(x, y, t), η = η(x, y, t), (37)

where(x, y)and(ξ, η)are the physical and computational coordinates, respectively. A mesh
coveringÄp is obtained by applying the mapping given in (37) to a partitioning ofÄc.

FIG. 9. Results for Example 3 withN = 40. (a) Mesh trajectories, (b) enthalpy;× coarse grid, — fine grid.
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FIG. 10. Phase front propagation for Example 3 withN = 40.

A popular way to choose the coordinate transformation is to require that it minimizes a
functional of the form

I (ξ, η) = 1

2

∫
Äp

(∇ξT G−1∇ξ +∇ηT G−11η) dx dy, (38)

where∇ = (∂/∂x, ∂/∂y) andG(x, y) is a 2× 2 symmetric positive definite matrix, often
referred to as a monitor matrix. The idea in adaptive mesh generation is to chooseG to
concentrate mesh points inÄp where the solution of the PDE is difficult to solve. Such an
approach has been used recently by Caoet al.[5] as the basis of anr -adaptive finite element
method. To apply these ideas to two-dimensional problems work is underway to initially
consider the monitor matrix

G =
(

1+ µ1√
µ2

2(x− x∗)2+ 1

)
I ,

whereI is the 2× 2 identity matrix andx∗ is the closest point on the phase boundary to the
pointx. Preliminary results in this direction are very encouraging.

7. CONCLUSIONS

In this paper we have developed a very simple adaptive moving mesh method for phase-
change problems in one dimension. The method uses a smoothed enthalpy-temperature rela-
tionship and the grid is moved to equidistribute an analytically integrable monitor function.
The algorithm gives rise to smoothly clustered mesh trajectories which allow a very accurate
prediction of the position of phase-change boundaries. We have used a novel semi-implicit
discretisation that gives rise to systems of nonlinear algebraic equations that can be solved
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efficiently using Newton’s method. We have also shown theoretically that a unique solution
of these systems exists. Future work will include a detailed convergence analysis of the
method and the extension of the moving mesh methodology to multidimensional problems.
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